top of page

EDUCATIONAL RESOURCES  IN  MATHEMATICS -  ALGEBRA

74908177_10220389022066450_7365337255818
UC 001.jpg

There's a beautiful link between the mathematical subjects Geometry and Algebra. Historically this link was originally shown first by the french Philosopher and Mathematician Rene Descartes. (1596 - 1650)
Descartes showed how geometric points can be represented in a coordinate system as two linked coordinates, the first one showing the point relative to a vertical axis of the coordinate system, and the second coordinate showing the point relative to the horisontal axis.
                                                   Thus the point with coordinates 2 and 3, that is the point (2, 3) is situated 2 unites to the right of the
                                                   vertical  axis and 3 units above the horisontal axis.
                                                   Representing geometrical points in this way, also makes it possible to represent functional relations in                                                                                       abeautiful and  effective way.

                                                   The picture above shows how the area of a square as a function of it's edge-length can be representated                                                                                   dynamically in the
multirepresentational dynamic environement GeoGebra. The edge-length can be                                                                                   changed dynamically producing a second degree function graph (to the right) showing dynamically how                                                                                     the square area changes as the edge-length is changed.

                                                   The app which can be used within GeoGebra or as an online app, can be bought from
Stabelvollen
                                                   Media and be used freely,  privately only.  Purcahse the app in SHOP, and the app can be downloaded online.

                                                   (c) :
Stabelvollen Media. 2020.

Descartes 01.jpg
Descartes 02.jpg
bottom of page